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Origin of the curved nature of Mach cone wings in complex plasmas
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While the propagation and refraction of waves and shocks which constitute Mach cones have been well
studied in continuous slowly varying stratified media such as gases, liquids, and solids, here we investigate
these processes at the kinetic, discrete~or ‘‘molecular’’! level in a complex plasma where the stratification
scale is of the order of the damping length. The shape of Mach cones formed by nondispersive linear sound
waves in a nonuniform complex plasma was calculated analytically using the method of wave rays. The cases
of transversely and longitudinally inhomogeneous media as well as a medium with a sound speed maximum
were considered. The theory was compared with experimental observations of Mach cones with curved wings
~dynamic Mach cones! in a two-dimensional complex plasma. A good quantitative agreement was obtained.
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I. INTRODUCTION

Mach cones are V-shaped disturbances or shock wa
produced by a supersonic object moving through a medi
While they are best known in gas dynamics@1#, they also
occur in solid matter@2#. Mach cones in complex~dusty!
plasmas were predicted by Havneset al. @3,4# and observed
experimentally in a two-dimensional~2D! strongly coupled
complex plasma@5–7#. They were described theoretically b
Dubin @8# as a superposition of linear dispersive waves. T
approach works well only in the far field, as pointed out
Ma and Bhattacharjee@9#, who developed a molecular dy
namics simulation of compressional and shear Mach co
Shear Mach cones were observed experimentally
Nosenkoet al. @10#.

The interest in Mach cones in complex plasmas is high
two reasons: first, fundamental studies at the kinetic level
possible and second, it is anticipated that the cameras o
Cassini spacecraft might possibly be able to image M
cones in Saturn’s rings@3,4#, when it arrives at Saturn in
2004. The dust which constitutes Saturn’s rings is charged
exposure to sunlight and the Saturnian magnetosph
plasma. As a consequence, the dust orbit velocities lie
between corotational and Keplerian, depending on the
ticle size. The Mach cones are produced by boulders, wh
move in Keplerian orbits. The velocity difference betwe
boulders and dust can be supersonic, compared to the
acoustic speed~in the charged dust!. Observation of Mach
cones might therefore provide a means for remote diagn
tics of complex plasmas in Saturn’s rings@3,4#. They might
also be used effectively for diagnosing, e.g., reactive plas
with growing particles@11#.

Complex ~dusty! plasmas consist of submicron to mill
meter sized particles immersed in an electron/ion plas
The particles charge up~usually negatively! by collecting
electrons and ions, and can interact with each other. Com
plasmas are characterized by a coupling constantG, which is
the ratio of the Coulomb interaction energy and the kine
energy of the particles. Depending onG, complex plasmas
can be in gaseous~G,1!, liquid ~G.1!, or crystalline
~G*170! states@12#.
1063-651X/2004/69~2!/026407~8!/$22.50 69 0264
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Dusty plasmas are ubiquitous in space, e.g., interste
and intergalactic clouds, protoplanetary disks, comet ta
and planetary rings. They are well studied in astrophys
and occur in the weakly coupled~gaseous! state@13#. The
presence of the third~dust! plasma component gives rise t
new wave modes, the most important being the dust acou
wave ~DAW!, which was described theoretically by Ra
et al. @14# and first observed by Barkanet al. @15#. The iner-
tia in this mode is provided by charged and massive d
particles which slowly respond to electric fields thus prov
ing oscillations of very low frequency~1–100 Hz!.

The formation of plasma crystals~strongly coupled com-
plex plasmas! was recently discovered@16–19#. This accel-
erated the interest in the field, and the term ‘‘complex pl
mas’’ was coined. Since the macroscopic particles can
easily observed with an ordinary video camera and their
rangement is analogous to the atoms in real matter, com
plasmas can be used as a model system@20# to study phase
transitions@19–23#, waves@24–26#, solitons@27,28#, shocks
@29#, and Mach cones@5–7# at the kinetic level.

Complex plasmas usually consist of four componen
electrons, ions, neutrals, and dust particles. The dust part
can be visualized individually, they can be strongly intera
ing ~even forming crystal structures!, and research at the
most fundamental kinetic level is possible. One of the int
esting questions is the identification of the range of appli
bility of fluid dynamics as the system is resolved to the d
crete~particle! level. Complex plasmas can only be sustain
by a constant input of energy to maintain ionization, maki
them ‘‘open systems.’’ Hence another important quest
concerns the thermodynamics which is applicable in t
case.

Mach cones were originally considered for homogene
and constant conditions@3,4#. The cone shows up as
straight V-shaped pattern. Measurements of the open
angle and other details of the cone, such as, for exam
damping length and stand-off distance in front of the distu
ing body, were suggested as a diagnostic method in plane
rings @3,30# and in dusty plasma experiments@4,31#. Mach
cones in these cases are formed by DAW@14,15#, which are
acousticlike~weakly dispersive! waves.
©2004 The American Physical Society07-1
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In many cases the conditions in a dusty plasma may
be homogeneous and constant in time. This affects the s
of the Mach cone leading to curved patterns, so-called
namic Mach cones~DMC!. This opens up the possibility o
tracing the time and/or position dependent conditions in
dusty plasma by analyzing the Mach cone pattern and
deviations from a straight V shape. In reactive experime
where dust sizes and dust charges will change with time,
time history of the DAW velocity, which is dependent o
factors such as dust mass and charge, can be reconstr
from an analysis of the DMC shape@11#.

In the present paper we consider the DMC problem an
and include situations where the dusty plasma is spati
inhomogeneous. Compared to most stratified systems~e.g.,
the Earth’s atmosphere, seismology, stratified fluids! the
scale of variations occurs at the scale of particle separat
~equivalent to a few or a few tens of molecular distance!.
Hence, by comparison with usual situations, we are in
extreme inhomogeneous limit. The Mach cone relat
should be derived in this case by integrating along the w
rays, i.e., a general nonlocal problem should be solved. In
analysis, we nevertheless restrict ourselves to nondispe
dust acoustic waves and demonstrate the general ray tra
method in Sec. II. In Sec. III we reconsider the DMC meth
@11# for a homogeneous medium with time evolution~includ-
ing fast evolution!, while in Secs. IV and V we find the
resulting Mach cone shapes in media which are inhomo
neous in the transverse and longitudinal directions with
spect to the velocity direction of the disturbing body. T
theoretical result is then compared with the experimen
data.

Even though multiple Mach cones were reported@5–9#,
we limit ourselves to the description of the first compre
sional Mach cone. Since the multiple cones are usually w
separated, the first cone can be treated independently.

II. WAVE RAYS

In order to analyze the shape of Mach cones we used
method of wave rays. It was developed for analysis of s
wakes@32# and used for Mach cones in Ref.@8#. We consider
the propagation of wave rays through the medium and li
ourselves to nondispersive acoustic wave rays which are
fined by the following set of equations:

ṙ5vg , k̇52] rv, v5kCs , vg5kCs /k. ~1!

This approach works for both compressional and shear s
amplitude cones as a first approximation. The effects of
persion are significant in the far field, where the cones d
appear due to neutral gas damping.

To demonstrate all features of our approach, we first
vestigate the case of a spatially uniform medium where E
~1! become

ṙ5vg , k̇50, v5kCs , vg5kCs /k, ~2!

and have a ballisticlike solution:

k5k05const,
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k
Cs~ t2t0!5r05const. ~3!

The values with 0 subscript are supposed to be known
certain initial timet0,t. As expected in a homogeneous is
tropic medium, the rays are straight lines and the wave fr
propagates as a circle around the excitation point.

Let us assume that the wave pattern is excited by a p
source which is moving with a constant velocity along
trajectoryysource50, xsource5Vt. Sincer0 in Eq. ~3! is the
starting point for any individual wave excited by the sourc
evidently,r05Vt0ex should be substituted in Eq.~3! instead
of r0. The sound ray can then be represented as

x2Cs~ t2t0!cosc5Vt0 ,
~4!

y2Cs~ t2t0!sinc50,

wherec is the angle betweenk and thex axis, and a 2D
pattern is considered for simplicity.

From the mathematical point of view, Eqs.~4! are the
two-parametric families of curves having the valuest0 andc
as parameters. The envelope for these curves represen
shape of the Mach cone. The following two steps will det
mine the envelope. First, the parameterc should be elimi-
nated. This means that the ‘‘sound front family’’ is studie
instead of the ‘‘sound ray family.’’ For the problem in Eq
~3!, the sound front family is simply the family of circle
which are growing radially in time. We find by combinin
the two Eqs.~4!

~x2Vt0!21y25Cs
2~ t2t0!2. ~5!

Differentiating this relation with respect to the parametert0
and keeping all other values fixed gives

t05
Vx2Cs

2t

V22Cs
2

. ~6!

Substituting this value back into Eq.~5!, we can find the
relationship describing the envelope:

y25
Cs

2

V22Cs
2 ~Vt2x!2[~Vt2x!2 tan2 u, x<Vt. ~7!

This is the well-known result for a classical Mach co
whereu is the opening angle of the Mach cone.

III. DYNAMIC MACH CONE

The set of Eqs.~2! can be translated to a case where t
medium is homogeneous but changes with time on a t
scale which is long compared to the wave period.

Let us consider a two-dimensional case. To find a solut
for the dynamic problem, we make the straightforward
definitions such that Eqs.~4! are replaced by
7-2



.

em
n
-
il

a
b
s

an

un
in

by
lid
e

e
e

m
a

t

x-

er
ent

e

he

y

h
d it

rec-
rtex

ays
long

w
f

ium
.g.,

are
be
en-
inal

ORIGIN OF THE CURVED NATURE OF MACH CONE . . . PHYSICAL REVIEW E 69, 026407 ~2004!
x2coscE
t0

t

Cs~ t8!dt85Vt0 ,

~8!

y2sincE
t0

t

Cs~ t8!dt850,

while Eq. ~5! should be written as

~x2Vt0!21y25S E
t0

t

Cs~ t8!dt8D 2

. ~9!

The envelope~DMC! is then defined parametrically by Eq
~9! and the first of Eqs.~8! with cosc5Cs(t0)/V:

~x2Vt0!5
Cs~ t0!

V E
t0

t

Cs~ t8!dt8. ~10!

These relations give the general solution of the probl
from which one can find the DMC profile for any give
dependencyCs5Cs(t). A particular case for the time
dependent sound speedCs5Cs(t) has been studied in deta
in Ref. @11#.

It is of interest to investigate the Mach cone profile ne
its origin since this region is often the only one which can
investigated experimentally. A corresponding expansion
ries is given by@11#

y25
a2

12a2
~Vt2x!2F12

ȧ/a

~12a2!2

Vt2x

V
1•••G .

~11!

Here, the dot denotes the derivative with respect to time,

a5a~ t !5
Cs~ t !

V
~12!

is the dynamic Mach cone. Depending on whether the so
speed increases, or decreases, in time, the Mach cone w
are bent correspondingly, as predicted in Ref.@11#.

If we assume that the size of cone wings is limited
damping, and ifa is small, then the expansion series is va
when the time scalet of the sound speed variation is larg
enough:

tn*S 11
1

M221
D 22

, M5
1

a
. ~13!

Here,n is the damping rate. For the parameters listed in R
@11#, ~Eq. 13! is valid in most cases where the Mach numb
is largeM@1.

Relation ~11! gives a solution of thedirect problem: we
know thatCs5Cs(t), and can obtain the cone profile from
this given variation. More interesting is the inverse proble
when we have experimentally measured the cone profile
want to obtain the variation of the sound speedCs5Cs(t).
For this solution let us find the derivative]y/]x, i.e., the
tangent of the opening angleu at t0. From Eq.~7! it follows
that
02640
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tan2@u~ t0!#5S ]y

]xD 2

5
Cs

2~ t0!

V22Cs
2~ t0!

. ~14!

Equation ~14! is valid along the whole cone wing, no
only near the cone apex. This allows us to solve theinverse
problemwhere we determineCs5Cs(t) by using the data of
the curvey5y(x,t) for the Mach cone at timet. A chosen
point (x,y) on this curve corresponds to a wave being e
cited at a timet0 at the pointVt0, where the origin corre-
sponds to the position of the disturbing body at timet50.
Another point on the Mach cone will correspond to anoth
t0. Since the medium is uniform in space the wave front, s
out att0 and arriving at (x,y) at timet will not be bent. The
tangent at (x,y) will be parallel to the wave front, and th
normal to the curve at the same point will cross thex axis at
the point Vt0 where the wave was excited. This gives t
relation

Vt05x2Uy~x!S ]y

]xD U. ~15!

This, combined withCs found from Eq.~14!, is the solu-
tion of the inverse problem:

Cs~ t0!5V

US ]y

]x
DU

A11S ]y

]x
D 2

. ~16!

If we know the velocityV of the disturbing body, the timet0
can be found and this, together witht, the observing time of
the analyzed DMC, will give the time history of the velocit
Cs .

Equation~16! is a solution of the general dynamic Mac
cone problem with the acoustic speed varying in time an
is valid for fast variations. The Mach cone angleu is the
angle between the tangential to the cone wing and the di
tion of propagation, not necessarily close to the cone ve
~Fig. 1!. It is remarkable that Eq.~16! depends only on the
local acoustic speed, reflecting the fact that the wave r
remain straight even though the acoustic speed varies a
them. In the limit of a constant acoustic speed Eq.~16! be-
comes the well-known Mach cone relation: 1/M5sin(u),
whereu is the angle at the cone vertex. In the limit of a slo
varying acoustic speed Eq.~16! reproduces the results o
Havneset al. @11# @see also Eq.~11!#.

IV. MACH CONE IN A TRANSVERSELY
INHOMOGENEOUS MEDIUM

Waves propagating in a spatially inhomogeneous med
can be reflected if the density gradient is large enough, e
at a surface~total internal reflection!. For gradient scales@
mean particle separation the wave rays and wave fronts
bent @33#. The reflection, or bending problem cannot
solved analytically in general. We have therefore conc
trated on two particular cases: a transverse and a longitud
7-3
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ZHDANOV et al. PHYSICAL REVIEW E 69, 026407 ~2004!
2D-inhomogeneity with respect to the velocity vector of t
disturbing body. In the case of a transverse inhomogen
the general equations~1! are simplified, and can be written a

ẋ5
kx

k
Cs~y!, ẏ5

ky

k
Cs~y!, k̇x50, k̇y52kCS8~y!.

~17!

This system conserves ‘‘energy,’’ where the wave freque

v5kCs~y!5const, ~18!

which can be proved by direct differentiation. Thex compo-
nent of the wave vector is also conserved,kx5const.

For further analysis it is convenient to introduce the f
lowing parameters:

b5
kxC0

v
, f ~y!5S C0

Cs~y! D
2

,

ky5s
v

C0
Af ~y!2b2, s561, ~19!

whereC0 is a scale factor for the velocity distribution. The
the formal solution of Eqs.~17! is given by

FIG. 1. Dynamic Mach cone.Cs(t)5C0@11(2/p)atan(t/t)#,
C052 cm/s,t51 s, V54 cm/s. ~a! For any fixed position~given
by the vertically dashed line!, two tangents to the cone wings can b
constructed at the intersection. The perpendicular lines to these
gents cross at some point on the trajectory of the source, w
excites the waves. This point corresponds to the timet0. ~b! Illus-
tration of the inverse problem solution.
02640
ty,

y

C0~ t2t0!5E
0

y

dy
s f

Af 2b2
, x2Vt05E

0

y sb

Af 2b2
.

~20!

Eliminating the parametert0 results in

x5Vt1E
0

y

dy
sb

Af 2b2
2

V

C0
E

0

y

dy
s f

Af 2b2
. ~21!

To obtain the envelope, we have to differentiate this relati
ship with respect tob. This yields

b5
C0

V
, xenvelope5Vt2E

0

y

dy sAS V

Cs~y! D
2

21.

~22!

Equation~22! corresponds to the solution of thedirect prob-
lem, where the sound speed distribution is known. But
inverse problem, the determination of the sound speed dist
bution from the known cone profile, can also be solved a
lytically. From Eq.~22! it follows that

Cs~y!5

VU]y

]x
U

A11S ]y

]x
D 2

. ~23!

With respect to relation~22!, it is not a surprising result:
during the source propagation, the cone is in a steady s
and the profile does not change in time. Note that the c
wings are bent up towards the direction of the sound sp
gradient as the sound speed is increasing.

V. MACH CONE IN A LONGITUDINALLY
INHOMOGENEOUS MEDIUM

In the case of a longitudinally inhomogeneous mediu
we have

ẋ5
kx

k
Cs~x!, ẏ5

ky

k
Cs~x!, k̇y50, k̇x52kCS8~x!.

~24!

Here the problem is more complicated. As in Sec. IV t
wave frequency is conserved along the sound rays:

v5kCs~x!5const. ~25!

The y component of the wave vector is also conserved,ky
5const. We now introduce the following parameters, wh
again are similar to but not identical to those of Sec. IV:

b5
kyC0

v
, f ~y!5S C0

Cs~x! D
2

, kx5
v

C0
Af ~y!2b2,

~26!

whereC0 is the scale factor for the velocity distribution. Th
formal solution of Eqs.~24! is given by

n-
h

7-4
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C0~ t2t0!5E
Vt0

x

dx
f

Af 2b2
, y5E

Vt0

x

dx
b

Af 2b2
.

~27!

To find the envelope for this family of rays, one has to d
ferentiate Eq.~27! and substitute the calculated derivativ
by the relationship

J[
]y

]b

]x

]t0
2

]x

]b

]y

]t0
50 ~28!

(J is the Jacobian; by definition, it has to be equal to zero
an envelope!.

From that we obtain

benvelope56
C0

Cs~Vt0!
A12S Cs~Vt0!

V D 2

. ~29!

The parameterb is finally substituted back into the relation
~27!, and from that the envelope curve is parametrically
fined:

FIG. 2. Mach cone in a longitudinally inhomogeneous mediu
~a,c! wing profiles; ~b,d! sound speed profile.~a,b! Cs(y)5C0@1
2(2/p)atan(y/L)#, ~c,d! Cs(y)5C0@11(2/p)atan(y/L)#, in both
casesC052 cm/s,V54 cm/s,L55 cm, t51 s.
02640
n

-

C0~ t2t0!5E
Vt0

x

dx
f

Af 2benvelope
2

,

y5E
Vt0

x

dx
benvelope

Af 2benvelope
2

. ~30!

The tangent of the slope angle is given by

S ]y

]xD 2

5
Cs

2~Vt0!1V2@12Cs
2~Vt0!/Cs

2~x!#

V22Cs
2~Vt0!

. ~31!

Equations~30! and ~31! describe the analytical solution o
the direct problem. Some particular propagation cases
shown for illustration purposes in Fig. 2.

For instance, nearby the cone apex relation~31! becomes

S ]y

]xD 2

>
Cs

2~x!

V22Cs
2~x!

>
a2

12a2 S 12
2

12a2

ȧ

a

Vt2x

V
1••• D ,

a5a~ t ![
Cs~Vt!

V
. ~32!

In contrast to the case of a transverse inhomogeneity
cussed before, the cone is now symmetric with respect to
y axis, but not stationary. The cone profile varies in tim
during the propagation. Note that if the sound speed grad
is parallel to the direction of the moving source, the tails
the cone wings are bent towards the source trajectory

.

FIG. 3. Mach cone near a sound speed maximum.~a! Wing
profiles; ~b! sound speed profile. Cs(y)5C0@11@(x
22)/L#2#21, C052 cm/s,V54 cm/s,L55 cm, t51 s.
7-5
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FIG. 4. Mach cone images showing particle velocity map~a!
and number density map~b!. The left-hand side wing is curved
back. This is attributed to the lower dust-lattice speed at the edg
the lattice, where the particle number density is lower. The rig
hand side wing is in the region of a constant particle number den
and it is straight.

FIG. 5. Mach cone in a transversely inhomogeneous medi
~a! Wing profiles; ~b! sound speed profile.Cs(y)5C0@1
1(2/p)atan(y/L)#, C052 cm/s,V54 cm/s,L55 cm, t51 s.
02640
cause the sound speed is faster in the front. In the oppo
case the wingsbent awayfrom the source trajectory since th
sound speed is faster behind the source. Furthermore, i
sound speed gradient changes in sign, transient forms ca
observed where the cone wings have a more complica
form ~see Fig. 3, where the source crosses the sound s
maximum!. The inverse problem cannot then be solved a
lytically but it is easily solved numerically.

VI. COMPARISON WITH THE EXPERIMENT

In order to verify our theoretical results, we conducted
experiment using the setup and analysis method of Ref.@6#.
The compressional Mach cones were created in a t
dimensional plasma crystal by fast particles, moving un
the lattice at a constant speed. We observed Mach cone
the edge of the lattice, where the particle number den
~and the dust lattice wave speed! was lower than that close

of
t-
ty

.

FIG. 6. ~a! Shape of a Mach cone in a transversely inhomo
neous medium. The experimental data points~open circles! are
taken from the velocity map@Fig. 4~a!#. Both cone wings are fitted
to a third order polynomial~solid lines!. The trajectory of the cone
vertex is marked by a dashed line.~b! Inverse Mach number~ratio
of the acoustic speedCs to the speed of a perturbing bodyV) across
the Mach cone trajectory. The negative direction corresponds to
left cone wing, the positive to the right. Filled circles indicate t
values calculated directly from the particle number density m
@Fig. 4~b!#. The solid line is calculated from the shape of the Ma
cone. Typical error bars are marked on one of the data point
both plots.
7-6
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ORIGIN OF THE CURVED NATURE OF MACH CONE . . . PHYSICAL REVIEW E 69, 026407 ~2004!
to the center of the lattice. The dynamic Mach cone is sho
in Fig. 4. Its left wing curves back@Fig. 4~a!#, i.e., it has a
larger opening angle close to the vertex and smaller far fr
it. This agrees qualitatively with the theoretical predictio
for a transversely inhomogeneous medium@Fig. 5~a!#. The
particle number density map is shown in Fig. 4~b!. The edge
of the lattice is on the left side of the field of view. Th
number density is lowest at the edge (1.5 mm22) and in-
creases towards the center reaching a constant valu
3.3 mm22 at 5–7 mm from the edge.

In order to reconstruct the properties of the medium us
the Mach cone shape we first obtained the trajectory of
vertex @6# and fitted it to a straight line. The speed of th
perturbing body was then determined to beV535
67 mm/s. The shapes of the cone wings were then ta
from the velocity map@Fig. 4~a!# and fitted with a third-order
polynomial. Figure 6~a! shows the cone wings and the vert
trajectory.

Using Eq. ~23! we reconstructed the acoustic speedCs

across the cone trajectory. The particle number densitn
across the cone trajectory was obtained from the num
density map@Fig. 4~b!#. The acoustic speed is related ton
~particle separationa), particle chargeQ, and the Debye
length lD by Eq. ~6! in Ref. @6#, which takes into accoun
nearest neighbor interaction. Using this relationship yie
values ofQ517 000e andlD50.34 mm for best agreemen
betweenCs /V obtained from the cone shape@solid line in
Fig. 6~b!# and Cs /V calculated from the known densityn
@circles in Fig. 6~b!#. This result compares well with the va
uesQ514 000e and lD50.34 mm reported in Ref.@6# for
similar experimental conditions.
.
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VII. DISCUSSION

We have shown theoretically and experimentally that d
ferent dusty plasma inhomogeneities can affect the M
cone shape in different ways. The DMC therefore conta
information on either the time history of changes in the m
dium @11# or of density gradients in the medium~or both!,
and its analysis should be a useful diagnostic method
dusty plasmas. However, since the effect on the DMC sh
in different cases can be similar, it still remains to see if
can get unambiguous solutions if we have a combination
time changes and density changes in the medium in wh
the DMC is formed.

The theory developed here is based on linear nondis
sive waves. A more complete theory should include non
earity to improve the precision in the near field~close to the
cone vertex!, as well as dispersion to make the far field s
lution more precise. Since the waves in complex plasm
~dust acoustic, compressional and transverse dust lattice! are
very weakly dispersive, it is expected that the theory p
vides a good approximation in the far field.

Comparison with experiments showed, somewhat surp
ingly, that the continuum theory developed here works r
sonably well even at the discrete~kinetic! level and for
strong gradients of order of a few~or a few ten’s! of the
elementary scales~particle separations!. The theory is valid
for both compressional and shear wave cones. Observa
of the particle motion at the kinetic level can distingui
between the modes. In the case of excitation by a mov
body, both modes are excited and since the compressi
waves propagate faster, they will produce the outer co
Weakly coupled plasmas do not support shear waves at
of course.
es.
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